Longer Version of Identification and Estimation of Nonlinear Models Using Two Samples with Nonclassical Measurement Errors
نویسندگان
چکیده
This paper considers identification and estimation of a general nonlinear Errors-in-Variables (EIV) model using two samples. Both samples consist of a dependent variable, some error-free covariates, and an error-prone covariate, for which the measurement error has unknown distribution and could be arbitrarily correlated with the latent true values; and neither sample contains an accurate measurement of the corresponding true variable. We assume that the regression model of interest — the conditional distribution of the dependent variable given the latent true covariate and the error-free covariates — is the same in both samples, but the distributions of the latent true covariates vary with observed error-free discrete covariates. We first show that the general latent nonlinear model is nonparametrically identified using the two samples when both could have nonclassical errors, without either instrumental variables or independence between the two samples. When the two samples are independent and the nonlinear regression model is parameterized, we propose sieve Quasi Maximum Likelihood Estimation (Q-MLE) for the parameter of interest, and establish its root-n consistency and asymptotic normality under possible misspecification, and its semiparametric efficiency under correct specification, with easily estimated standard errors. A Monte Carlo simulation and two data applications are presented to show the power of the approach.
منابع مشابه
Identification and Estimation of Nonlinear Models Using Two Samples with Nonclassical Measurement Errors.
This paper considers identification and estimation of a general nonlinear Errors-in-Variables (EIV) model using two samples. Both samples consist of a dependent variable, some error-free covariates, and an error-prone covariate, for which the measurement error has unknown distribution and could be arbitrarily correlated with the latent true values; and neither sample contains an accurate measur...
متن کاملMeasurement Error Models
Many economic data sets are contaminated by the mismeasured variables. The problem of measurement errors is one of the most fundamental problems in empirical economics. The presence of measurement errors causes biased and inconsistent parameter estimates and leads to erroneous conclusions to various degrees in economic analysis. Techniques for addressing measurement error problems can be classi...
متن کاملNonparametric Identification and Estimation of Nonclassical Errors-in-variables Models without Additional Information
This paper considers identification and estimation of a nonparametric regression model with an unobserved discrete covariate. The sample consists of a dependent variable and a set of covariates, one of which is discrete and arbitrarily correlates with the unobserved covariate. The observed discrete covariate has the same support as the unobserved covariate, and can be interpreted as a proxy or ...
متن کاملIIR System Identification Using Improved Harmony Search Algorithm with Chaos
Due to the fact that the error surface of adaptive infinite impulse response (IIR) systems is generally nonlinear and multimodal, the conventional derivative based techniques fail when used in adaptive identification of such systems. In this case, global optimization techniques are required in order to avoid the local minima. Harmony search (HS), a musical inspired metaheuristic, is a recently ...
متن کاملInstrumental Variable Estimation of Nonlinear Models with Nonclassical Measurement Error Using Control Variates∗
We consider nonlinear models with an independent variable that is measured with error. The measurement error can be correlated with the true value, i.e. the measurement error is allowed to be nonclassical. We show that we can use a control variate estimator to estimate the parameters of interest. If we are prepared to make an assumption of the joint distribution of the first-stage and measureme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009